A nice cup of MoCA…

Let’s jump into the time machine and head back to the turn of the century (21 years ago, y’all… can you believe it?). It was a time when cable TV was king, and you could usually count on a cable outlet in almost every room of the house, when a cable TV package could easily come with half a dozen converter boxes, before the term “cord-cutter” struck fear into the hearts of cable executives. and when Netflix was an upstart DVD by mail company. This was also when a brand new technology called “Wi-Fi” had just showed up on the scene. Broadband internet (a whole 5 megabits!) was starting to find its way into homes served by cable TV, and it made dialup look severely lame. Usually these “cable modems” were hooked directly up to a single computer, either via USB, or via Ethernet if your computer was really snazzy. Often, these computers were directly connected to the internet with no firewall software, which led to all kinds of shenanigans.

Ah, those were the days.

If you had a home built around that time, chances are, the builder put coaxial cable into every room they could think of so you could have TV everywhere. And they’d usually string a daisy chained chunk of Cat5 for telephones. If they were really fancy, they would run each cable and phone outlet back to a central point where you could pick and chose where the signals went.

The challenge is that while technology changes every few years, the wiring in a house is generally put in place with little thought given to even the near future. In 2000, only the serious nerds (such as yours truly) had computers (plural) in their homes. The idea of the networked home and the Internet of Things was still a long way off.

If you were a nerd with computers (plural) and so fortunate as to have a home whose Cat5 phone cables were “home-run” back to a central interconnect (where they were usually all spliced together on a single pair for voice), you could reterminate them on both ends with a modular jack and use them for Ethernet (the idea of a router at home with NAT was still pretty new back then as well). In most cases, the runs were short enough that when gigabit Ethernet started showing up, you could still make the Cat5 work.

Recently, I had to figure out how to connect up a bunch of access points in a few homes that were built in the 1999-2000 time frame. One is the rental I just moved into, and the other is a moderately sized home owned by a client who has found himself and his family working from home a lot more lately, just like the rest of us.

My home was wired to nearly every room with home run Cat5 and coax (lucky me!). Since I have buckets full of Cat5e jacks, it was a pretty simple swap on both ends and I got gigabit. Didn’t require much effort, and thankfully didn’t require causing any damage to the rental house, which the landlord tends to get cranky about.

The client’s home, on the other hand, had daisy chained telephone line and coaxial cable throughout. And since it’s a higher end home, running ethernet cable to each room is a non-starter (not to mention expensive and disruptive). And, of course, the cable modem/router/wireless/waffle iron/juicer/vacuum combo device provided by the cable company is as far across the house from the home office as you can possibly get without actually putting it in the neighbors’ house. Cable installers love outside walls, which are about the worst possible place to put a wireless access point. Zoom calls can get a little frustrating and embarrassing when you’re the presenter and your connection sucks…

So how to get a decent connection up to the office and elsewhere in the client’s house to blanket it with wifi? Thankfully, 20 years of innovation has happened, and the chip makers and the cable companies got together to solve this problem, because they needed to deliver services over IP within the homes as well. What they came up with is the deliciously named “MoCA“, which stands for “Multimedia over Coax Alliance”. They figured out a way to be able to run a digital network signal over the existing coax wires present in most houses, and make it compatible with Ethernet.

Early versions weren’t very fast (version 1.0 in 2006 was capable of 100Mbps), but as they applied some of the same RF tricks that Wi-Fi used, they were able to make it perform at a much higher level (Version 2.5, released in 2016, is capable of 2.5Gbps). Version 3 aims to provide 10Gbps.

MoCA will support up to 16 nodes on the wire, and can coexist with some shockingly bad signal conditions. It operates from 1125MHz up to 1675MHz, which is above where cable TV signals live but still quite functional over short distances with existing coaxial cable and splitters. It forms a full mesh where each node talks directly to the other nodes that it needs to, using a combination of Time-Division Multiple Access (TDMA) and Orthogonal Frequency Division Multiple Access (OFDMA), a trick that is also used by WiFi 6/802.11ax to make better use of airtime.

If you want a quick summary of how it works, device maker GoCoax has a great rundown on their home page.

MoCA also requires putting in a filter between the pole and your house so that your MoCA signals don’t end up putting your neighbors on the same network or screwing with the cable company’s lines.

Most current cable company provided gateways also support MoCA, and adding a MoCA transceiver to a live coaxial port on the wall in your house basically acts as another ethernet port on the gateway device. Cable companies commonly use this for IP based set-top boxes (over coax!) and additional wireless access points (such as Cox’s “Panoramic WiFi” and XFinity’s “XFi pods”).

While I haven’t tested the cable company’s wireless offerings (because I’m not a masochist, and I have access to vastly better wifi gear), I did want to find out how well MoCA performed as a straight Ethernet bridge for connecting up the client’s access points in such a way that I didn’t have to use wireless meshing, which performs quite poorly in most residential environments.

So I grabbed a couple of MoCA adapters (and a splitter) from Amazon and tried it out in a couple of different configurations. Testing was done from a MacBook Pro connected to the network via Ethernet, and a WLANpi connected on the other end of a MoCA adapter.

The test setup.

The first thing I noticed is that these devices are truly “plug and play”. I hooked one up to the coax in my office and the Ethernet side went into my switch. I then hooked 3 more up around the house, and on two of them, hooked up an access point, and on the third, the WLANpi. The access points came up and showed up in the controller just like they would on Ethernet (caveat: I had to power them externally). The WLANpi grabbed a DHCP address, and I started testing, using the librespeed web speed test built into the WLANpi, as well as iPerf3, also built into the Pi.

First, the baseline with the WLANpi connected directly to the switch. Pretty solid, about what you would expect from a gigabit network.

Next: The WLANpi at the other end of a 4-node MoCA 2.5 network:

An ever so slight reduction in throughput, and an extra few milliseconds of latency.

Directly connecting two nodes performed similarly.

So, bottom line, MoCA is a pretty solid option if all you have available is coax. It has the full wire speed, and doesn’t introduce the kind of latency that a wifi mesh does.

Downside: The MoCA spec doesn’t seem to provide for any means of powering converters centrally, or pushing PoE to the Ethernet device.

Other MoCA devices worth looking at:

  • Kiwee Broadband, has a passthru port as well as a second Ethernet port.
  • GoCoax, another inexpensive option that works on v2.5.

Working From Home: Home Network

Continuing the series about working from home, today I’m going to talk about the network inside your home, after it gets to your side of the router.

I posted some time ago about solving home wifi woes, so you can read that piece if you’re just trying to fix Wi-Fi weirdness.

In the previous post about internet access, I talked about the router being the gateway between your home network and the rest of the internet. For many home users, your modem, your router, ethernet switch, and your Wi-Fi access point are all stuffed into the same box, which can lead to some confusion when troubleshooting. It also means that if one of those components fails, you likely need to replace the whole thing, which can be a pain. So I’m going to talk about the various components, but just remember that they can sometimes be separate, or sometimes all in that one box we call “router”.

Network Switches

The network switch is the first stop after the router. The switch is what allows you to connect multiple Ethernet devices together. This forms the basis for your entire home network, known as a Local Area Network, or LAN. If you need more ports (not uncommon, since most all-in-one router devices usually only have 4 ports), you can attach a network switch to another. I won’t get into the gory technical details, but this is what allows you to split your network connection among multiple devices. For some homes, 4 ports is enough. For others (such as my own, where I have seven switches comprising nearly a hundred ports), you need to add switches to connect everything.

As a general rule, if a networked device in your house doesn’t move (or is bolted to the structure of the house), you should connect it via a wire, even if it’s capable of wireless. This includes things like TVs, printers, desktop computers, gaming consoles, and so on. A wired network connection will always be more secure and perform better than wireless. If you are a gamer, the reduced latency (“ping”) of a wired connection is something you desperately seek.

Many switches (mostly enterprise grade, but there are growing numbers of small business and home office switches) can also provide DC power over the Ethernet connection – this is known as PoE (and it is spelled out, not pronounced as in “Edgar Allan”), and allows you to power a variety of network devices such as access points and IP phones from a single physical connection. If you have your PoE power source equipment (switch) on a UPS, it can keep all the devices on the network running during a power outage. PoE comes in 3 basic flavors: 15 Watts (802.3af/PoE), 30 Watts (802.3at/PoE+), and most recently, 60 Watts (802.3bt/UPoE). Most devices you’ll encounter at home are perfectly happy to use the 15W variety.

A quick note about network patch cables: Don’t buy into the “Cat 7” marketing hype. This standard doesn’t even exist in the IT world because it doesn’t add any benefit to Ethernet connections. Unless you’re a huge nerd like me, the most you’re ever going to use on your home network is going to be 1 gigabit, which only requires Cat 5e cabling. Buying a more expensive Cat 6, 6a, or 7 cable isn’t going to make your network run any faster (and be very wary of all advice from anyone who tells you otherwise, because they’re about to sell you a whole bunch of crap you don’t need. Cat6 is the norm these days, so it’s probably the cheapest and most common. It will also run 10 gigabit connections within the distances presented in most residential environments. In any case, you’re never going to need 10 gig at home. Not even if you’re a big nerd. See my post about cabling categories for more details.

Wireless

Your Wi-Fi is simply an extension of your home network (LAN) without wires. The device that provides the Wi-Fi signal is called an Access Point, or AP. (Some people still call it a “WAP” for Wireless AP, but that’s not really helpful, because the W could also mean “Wired”). Even inside your residential gateway/router, the access point is a separate piece of hardware that connects internally to the built-in network switch.

The major downside to having an all-in-one gateway device is that what is optimal placement for the gateway (usually where the ISP installer could get a wire through the wall with a minimum amount of effort and damage) is rarely the best place to put an access point. Access points should be centrally located, and the ISP/Cable tech usually likes to be on an outside wall. When you put your wireless there, you’re sending half your signal outside and into your neighbor’s house, especially if you have it turned up to full power to hit the other end of the house.

A recent development in residential Wi-Fi is the rise of “Mesh” devices. This is basically a system of multiple access points which are centrally managed as one system, which allows you to extend wireless throughout your house. “Mesh” refers to those access points themselves connecting to the network wirelessly, rather than using an ethernet connection. Remember what I said earlier about wiring in devices that don’t move? This applies to access points as well. If an access point has to connect wirelessly to your network, it’s going to suffer from all the same wireless problems as any other device. Wire it in unless you have no other option. It’s going to perform a LOT better that way. And, as I mentioned earlier, you may be able to centrally power the access point with PoE.

IoT

As we get more connected, we have more and more smart devices at home. These are collectively referred to as the “Internet of Things”, or IoT. It’s a broad category that includes everything from connected thermostats to smart appliances, wearables such as smart watches, and so on. This is more of a side note to the Work From Home discussion, as IoT is one of those things that potentially impacts a network, but is largely tangential. There’s a saying that “The S in IoT stands for Security”. You’re already saying to yourself, “but there’s no S in IoT!” That’s precisely the point. IoT devices can pose a major security threat on your home network because most of them were not designed with network security in mind. Bottom Line: Isolate them from everything else as much as you can.

Summary/tl;dr

This was just a quick review of your home network components and how they interact, even if they’re all inside the same box. As usual, comments and questions below!

Winnie the Pooh in a honey pot

Working From Home: Firewalls and Honeypots

Yesterday, I saw a social media post from my friend Thorsten, who is an engineer for a large network security company, in which he shared some nifty dashboard graphics from his installation of a nifty little Linux distribution known as T-Pot (I’m a total sucker for great dashboards!).

T-Pot is a collection of various network honeypots with a very nice reporting backend. The project is maintained by Deutsche Telekom, who use it extensively within their own networks. (disclosure: If you run it, it will send back anonymized collected information about the threats seen to their data lake)

So I’m going to veer off a little bit from my regularly scheduled Working From Home series and talk about the importance of securing your networks. T-Pot won’t actually secure your network, it will merely report on the threat actors (most of them automated) that are attacking your network every second of the day. And to a small extent, time they spend “attacking” your honeypot is time they’re not spending attacking real targets (like Pooh up there at the top)

T-Pot takes about 30 minutes to install on a virtual machine (put it in a VLAN that is isolated from everything else!) and then all you do is add a firewall rule to port forward all TCP/UDP (I also did ICMP) to that machine (after any rules to forward to actual stuff), and let it do its thing.

Results will start coming in almost instantly. In a matter of minutes, I’d collected literally hundreds of attacks. After a couple of hours, the numbers were a little disturbing. About 90 minutes after going live, I saw a sharp uptick in one type of attack, as it seems the attackers had found a new target and relayed that information to other attackers.

2.5 hours worth of data.
China, Russia, and.. Canada?
the T-Pot dashboard will show you what usernames and passwords are being used against your honeypot, as well as which known vulnerabilities were being exploited.

If you’re a business hastily trying to get people to work from home, did you just open up a port forward on your Layer 3 firewall to allow Remote Desktop? That probably wasn’t a great idea. As you can see, threat actors are constantly scanning each and every IP address on the internet, probing for vulnerabilities. All it takes is one successful entry into your network, and you’re toast. That can come through your homebound workers as well, if their networks aren’t secure.

Do you still think you don’t need a Layer 7 firewall?

Working From Home: Internet Access

In my previous post, I went over the basics of working from home. It’s worth noting here that many of these concepts can also be applied to your kids who might be taking school online – they’re teleworking just like you are, and face many of the same challenges. In this and future posts, I’ll be dealing with the tech basics required for a successful and productive home office.

I was originally going to do a single post on all things tech, but it started getting lengthy, so I decided to break it down into a couple of parts. This post will deal specifically with external network connectivity.

The Internet

No surprises here – a decent internet connection is pretty much a given for remote work. One thing that is becoming apparent during this quarantine period is that a whole lot of people have abysmally bad internet connections at home. I’m hearing horror stories from the trenches, from my colleagues and friends who work front-line IT support.

The word “Broadband” is thrown around a lot by ISPs intent on selling you a service package, but what does it really mean? In the United States, the Federal Communications Commission updated their definition of “broadband” most recently in 2015, to mean a connection speed of at least 25Mbps downstream (from ISP to your house), and 3Mbps upstream (from your house to your ISP. But what do those speeds really mean? The FCC also has a handy guide listing what activities require what level of speed.

So your Cable ISP touts their “SuperGigaFast” service with “gigabit” service. Sounds great, right? Not so fast. Cable-based ISPs that come into your house via a coaxial cable use a technology called DOCSIS, which has great downstream speeds, and (usually) abysmally bad upstream speeds. The cable companies originally designed this technology back in the late 1990s when internet usage consisted largely of downloading web pages and sending small bits of control data. This meant that an asymmetrical connection would work great for most users, and they would be able to leverage their existing wiring infrastructure.

Fast forward 25 years to 2020, and cloud-based data storage and teleconferencing and the like mean that you need a lot more upstream speed than you used to. But that hasn’t stopped cable companies from selling “gigabit” packages with a paltry 10Mbps upstream connection. When getting an internet service package for teleworking, your upstream speed should be at least 10% of your downstream speed – because if you saturate your upstream link, it’s going to negatively impact your downstream traffic and limit it. This lets the cable company sell you “gigabit”, knowing full well that they’ll never have to deliver on that promise. They also usually provide really cheap equipment which means your Wi-Fi speeds are going to be limited even more, and they still don’t have to deliver on those gigabit speeds they’re charging you for. If you have the option of a symmetrical connection (usually delivered over fiber optic cable), it will be a lot more functional.

Much of what applies to DOCSIS cable connections also applies to DSL connections from the local telephone company. Make sure you have enough upstream bandwidth to do what you need to do. Also beware of any service that has a data cap – working from home can blow through a data cap in a real hurry.

It’s usually worth investing in your own router – the equipment provided by the ISP is, in most cases, absolute junk. AT&T is notoriously bad about this on both their U-Verse DSL and fiber-based services, and they have it configured such that it’s very difficult to use a “real” router with their service.

And in some places, cable, fiber, or DSL aren’t an option, and you’re stuck with either a wireless ISP or cellular.

Hardware

The typical internet connection requires a couple of devices. ISPs and telcos generally refer to this as “Customer Premises Equipment”, or “CPE”.

1950s-era dial telephone using an acoustic coupler modem

The Modem

This is the device that interfaces your ISP’s connection with your home network, usually via an Ethernet connection. The term comes from “modulation/demodulation”, which is the process of converting a data stream into a series of electrical signals. This operates between what us network nerds call “Layer 1” (electrical signals) and “Layer 2” (data link). I posted on network layers in this post from 2018, if you want to get into some of the details of those. The modem’s primary function is extending your ISP’s physical network to your house. Before the days of direct internet connections, the data link was established over a telephone line by modulating the data signals into electrical signals in the narrow audio range supported by the telephone system.

Modems can take many forms, and in many cases, your ISP’s modem is integrated into a single device with a router. In the case of cable, you can usually supply your own. In the case of DSL or fiber service (where it’s usually called an Optical Network Terminal instead of a modem) it’s usually provided by the ISP and you won’t get much choice in the matter, although sometimes it’s possible to request a specific type or model.

Your smartphone also contains a modem that interfaces to the cellular networks – it likely uses LTE (4G), but older ones (3G) would use CDMA or GSM, and newer ones (5G) use a few different things, mostly based on LTE. If you need to interface a cellular network to your home network, either as a primary or backup link, there are dedicated cellular modem devices for that (more on that in a moment).

GIF from "The IT Crowd" where Moss shows Jen a small black box, and tells her, "This, Jen, is the Internet"

The Router

This is the device that connects your network to your ISP’s network. It operates at “Layer 3”, which for the vast majority of people means “the internet”. The internet is nothing more than a whole bunch of interconnected networks. A protocol (known as the “Internet Protocol”, or “IP”) has been in place for decades, specifying how all these networks can talk to each other. Each network is connected to other networks by way of a router (also known as a “gateway”). Its job is to look at traffic that comes in, and decide where it needs to go next. If it’s for another device on a network it’s directly connected to, it sends it directly. For something elsewhere on the internet, it sends it to the next router down the line (usually your ISP) to deal with and eventually get it to where it needs to go. This process usually happens in a matter of milliseconds (you can use the “ping” command to see how long this takes, or “tracert” (windows)/”traceroute” (everything else) to see the path it takes. The whole idea is that you don’t see what’s happening under the hood.

The term “Router” is often misconstrued to mean “WiFi”. This is often because the equipment provided by an ISP or purchased consists of a router, a network switch, and a Wi-Fi access point (and sometimes a modem) all in one box referred to as “the router”.

Owing to a general shortage of IP addresses, your ISP will assign a single IP address (which is unique on the entire internet!) to your router’s Internet-facing connection (the Wide Area Network/WAN interface), and your own network devices (on the Local Area Network/LAN interface) will occupy address space that is defined by RFC1918 as “private” address space (which can not be used directly on the internet, but can be re-used by anyone – in most cases, your network will be 192.168.something, the specifics vary from one devices to another). The router will then perform Network Address Translation (NAT) to move data between the two networks. Most of the time, you don’t need to worry about the details of how it’s set up, although when it comes to troubleshooting, having at least a general awareness of how it’s set up can be useful.

3D Illustrated representation of a firewall.

The Firewall

This is a key piece of the network, as it is what decides which traffic is and isn’t allowed. This is critical to providing network security. It is usually integrated into the router. It examines each packet and checks a list of rules (which can be updated multiple times a day to react to ongoing threats) to determine if the packet should be sent along its merry way, or dropped into a deep, dark hole.

LAN Party

The Local Area Network

The router is the transition point from your network to the rest of the internet. I’m not going to get into the details of the LAN for the moment (that’s for another post), but this is where you will connect all your equipment, either wirelessly via Wi-Fi, or via a wire to an Ethernet switch.

Single car in a tunnel

Virtual Private Networking (VPNs)

This isn’t really a hardware component, but is usually a key piece of any home office (it sometimes uses dedicated hardware, though). The function of a VPN is to connect you to another private LAN located elsewhere (either physically or just another part of the network.) When working from home, installing a dedicated private network connection between the main office to a home office is cost-prohibitive (although there are some interesting new technologies with 5G that will allow you to connect mobile devices directly to the corporate network, essentially making the corporate network its own cellular carrier.)

Enter the VPN – It uses the public internet to establish a connection to the corporate network, and it builds an encrypted tunnel that allows corporate traffic to pass through securely. Sometimes, this is an application that runs directly on a computer, establishing the tunnel directly to that computer, and sometimes, the tunnel is established by the network equipment you have at home, and it just presents another LAN for you to connect anything to. In most cases, in order to use bandwidth more efficiently, any traffic destined for the internet will go out directly from your router rather than through the tunnel and go out from the corporate network. This is known as a “split tunnel”. Some companies, however, will choose to pass all traffic through the tunnel in order to benefit from high-power corporate firewalls to better secure traffic against malware, data leakage, or to just filter content.

As cloud-based services such as Office 365 become more prevalent, VPN connections back to the office are becoming less important.

It’s worth noting that this is very different from public “VPN” services that claim to offer privacy when accessing the internet. While the underlying technology is similar, all these are doing is relocating where you hop on to the internet, sending it through the VPN service’s network where they can inspect all your traffic.

Home Network Equipment

Equipment

A quick rundown of connectivity equipment:

Cellular Modems

If you need to connect to a cellular network, you can use the following:

  • Your smartphone hotspot (easiest in a pinch, can also usually connect to your laptop via a USB cable if you don’t want to or can’t use Wi-Fi)
  • A portable hotspot, sometimes called a “Mi-Fi” or a “Jetpack”, both are brand names for common devices in this category. Many of these also can connect via USB.
  • A USB cellular modem (check your cellular carrier for options)
  • An Ethernet cellular modem or router such as a CradlePoint IBR series device

Some home routers and most enterprise routers will support a USB cellular modem as a WAN connection, either primary or as a backup.

Home Routers

There is a wide variety of these out there, and most of what you can get commercially will do the job better than what the ISP provides. NetGear and Asus both make devices that perform well, but these devices have limited security capabilities. TP-Link and Linksys are cheap, but tend to underperform. Plan on about $200-300 for these types of devices. I’ll get into this a little more when I talk about the LAN side of things.

Many people recommend Ubiquiti equipment, but that’s a lot more complex than I feel is appropriate for non-technical users. If it’s what a managed service provider supplies, then it’s quite adequate, but make sure they’re the ones that have to deal with the technical side of it. If you’re a network nerd, then you already know this stuff.

Enterprise Firewalls

This is where your corporate IT department or managed service provider usually comes into play, and provide you with a firewall/router device that is pre-configured for corporate networking and security standards (and will often set up a dedicated VPN connection as well). These devices come from a vendor like Fortinet, Aruba (in the form of a Remote Access Point), Palo Alto, Cisco/Meraki, and other enterprise networking vendors. These are helpful in a home office because they are generally managed by your MSP or IT department and are essentially plug and play, giving you a secure network connection that is functionally equivalent to being on the network at the office.

You can also purchase your own standalone firewall from these vendors, all of which have a home office model or two in their lineup. They usually come with an annual subscription cost which gives you frequent updates to the security profiles and rules, to adapt to the changing network threat landscape. These will typically provide much better security than a residential gateway device, but are more complex and expensive to operate.

Summary/tl;dr

This got long (which is why I’m breaking tech up into multiple posts), but the bottom line is that your internet connection is a vital piece of the home office puzzle, and it’s one where you’re going to want to spend some time and money getting it right. If you have to go cheap somewhere, this is not the place to do it, but you also don’t need to go overboard.

My colleague Scott Lester also posted on his blog about temporary internet access.

Please share your internet access related tips and experiences in the comments.

Home Office

Working From Home: The Basics

Since working from home is a hot topic right now with everyone practicing social distancing, I thought I’d present a couple of posts about what works for me. I’ve been working from home in some form or another since 2011, and I think I’m starting to get the hang of it. We’ll start with some of the basics of remote work in this post, and in later posts, I’ll dig into the details of home office technology and creating a functional work space.

Cat on Keyboard working from home

Help : About

Working from home has this almost mystical quality about it – that office lizards crave, and teleworkers almost take for granted. You can’t beat the commute. For me, it’s down a flight of stairs to the basement. The only time I have to contend with “traffic” is when the cats are sitting on the stairs demanding to be fed.

One common misconception about “working from home” is that it’s something you can do as an alternative to paying absurd sums of money for childcare when you have small children around. Don’t fall into this trap!. It’s literally impossible to focus on both work and kids at the same time. When I started working from home, my kids were 8 and 6. They’re now teenagers. They need supervision (and later, surveillance), and that’s simply not something you can do while working, and still provide the attention either one needs. If you’re splitting your time between kids and work, you’re doing both part-time. Your employer probably won’t be OK with this. If you’re self-employed, your income may also suffer.

The Bobs from the movie Office Space

Office Space

Make sure you dedicate space for “work” that is distinct and separate from “home”. If you work from the living room couch all day, your family won’t know when you’re “at work” and when you’re “at home”. This can also lead to spending too much time on one, and not enough on the other. Your family probably won’t be OK with this. And whatever you do, don’t ever work from your bedroom. It will be almost impossible to shut off work if you do that. If you’re married, your spouse will definitely not be OK with this. Bedrooms are for resting, not working.

Ideally, your space should have a door that you can close to separate yourself from the rest of the house. If you have the misfortune of living in a big city where living accommodations are reminiscent of concentrated animal facilities, then you may not have the luxury of a separate room. If you need to operate in the corner of the living room, get a divider like a shōji that can delineate that space (or if for some reason you’re feeling particularly nostalgic for cubicle life, you can buy actual cubicle furniture!). Being able to close yourself off is important when you’re on a video call, and it also doesn’t have your living space in the background.

Ideally, your space should also be able to be acoustically separate from the rest of the house. If you do have the kids at home, you don’t want their noise intruding on your conference calls. They also don’t really want to hear your call either.

Remember that the biggest enemies of productivity at home are:

  • The Television
  • The Couch (or even the bed!)
  • The Fridge

Make sure you don’t have any of those in your work space.

I not only don’t have a fridge in my home office, I don’t have a coffee machine or any other beverage dispensing device. Because when I need to get a beverage, it forces me to get up, go upstairs, and move around. Nobody works in the break room. Likewise for bathroom breaks. Moving around periodically is vital. If you have a smart watch that reminds you to do so, take advantage of that feature.

Cartoon of man at laptop wearing jacket and tie with no trousers.

Etiquette

A few points of etiquette:

  • If you’re on a call and not speaking, MUTE YOUR MICROPHONE. Always.
  • If you’re on a call with video, WEAR CLOTHES, preferably business-appropriate attire. Don’t forget that if you stand up, everyone on the call can see that you’re wearing Hello Kitty pajama bottoms… Or no bottoms at all!
  • Also on video calls: Be aware of what’s in the background. Both in your work environment and on your computer desktop. Audio calls, be aware of background noise. See also: Point #1
  • Conference Call Bingo: It’s a thing. Don’t be that co-worker that wins it for someone else.
  • If you’re the one scheduling the calls, allow time between calls for people to take care of basic physical needs like standing, going to the bathroom, or getting coffee. Nobody wants to be on back to back to back calls all day long. The converse is that you need to allow that same time between meetings when accepting them. Don’t overschedule yourself.
  • When you “go to work”, do so just like you would if you were to commute… Get up, exercise if that’s your thing, shower and make yourself presentable, and put on actual clothes. It’s easier to get into a work mindset if you do this.
  • Likewise, take a 15-minute break, and an actual lunch break. When you’re not self-quarantining, leave the house and get lunch somewhere local. Your brain will appreciate the break. Take a walk outside.

What are your favorite WFH tips? Leave them in the comments below.

Up next: Teleworker Tech. Stay Tuned!