Morning Fog along the Flint Hills National Scenic Byway

Mist Deployment, Part Deux

Second in a series about our first deployment of a Mist Systems wireless network. 

In my last post, I gave you an overview of the various components of the Mist Wireless system. This post will go into some of the design considerations pertaining to this particular project.

Because we’re now designing for more than just Wi-Fi, there are a few additional things to factor in when planning the network.

Floor Plans

It’s not uncommon for your floor plans to have a “Plan North” that doesn’t always line up with “Geographic North”. Usually this isn’t a factor, but looking at it in hindsight, I would strongly encourage you to build your floor plans aimed at geographic north from the start, as the Mist AI will also use that floor plan for direction/wayfinding and the compass in mobile devices will be offset if you just go with straight plan north. You can also design on plan north, but then output a second floor plan file that is oriented to true north. Feature request to Mist: Be able to specify the angle offset of the plan from true north and correct that for user display in the SDK.

For this project, I had access to layered AutoCAD files for the entire facility, which (sort of) makes things easier in Ekahau Site Survey, but sort of doesn’t – the import can get a little overzealous with things like door frames. I had to go do a fair bit of cleanup afterwards, and might have been better off just drawing the walls in the first place. This was partly due to the general lack of any good CAD tools on MacOS that would have allowed me to look at the data in detail and massage it before attempting the import into Ekahau. The other challenge is that ESS imported the ENTIRE sheet as its view window, which made good reporting impossible as the images had wide swaths of white space. Having the ability to crop the CAD file would have been nice.

Density Considerations

View from the rear of the main sanctuary at College Park Church in Indianapolis.

Since one of the areas being covered is a large auditorium, we had to plan on multiple small cells within the space. We needed to put the APs in the catwalks, as we did not have the option of mounting the units on the floor because of the sanctuary being constructed onslab (and while the cloud controller allows you to specify AP height and rotation from plan north, there is no provision to tell it the AP is facing *up* and located on/near the floor). This posed a few challenges, the first being that we were well above the recommended 4-5m (the APs were at 10m from the floor), the other being that we needed to create smaller cells. For this, we used the AP41E with an AccelTex 60-degree patch antenna.

Acceltex 8/10 dBi 60° 4-element patch antenna

 We also needed to either run a whole lot of cables up to the theatrical catwalks, or place a couple of small managed PoE switches – we unsurprisingly opted for the latter, using two 8-port Meraki switches, and uplinked them using the existing data cabling that was feeding the two UniFi APs that were up there.

As an added bonus, the sanctuary area was built with tilt-up precast concrete panels, which allowed us to use that heavy attenuation to our benefit and flood the sanctuary space with APs and not worry about spilling out too much.

Capacity-wise, we used 10 APs in the space, which seats 1700. Over the course of several church designs, I’ve found that a ratio of one active user for every three seats usually works out pretty well – in most church sanctuaries, the space feels packed when 2/3 of the seats are occupied, which means that we’re actually planning for one client for every two seats. Now, we’re talking active clients here, not associated clients. An access point can handle a lot more associations than it can active clients. As a general rule, I try to keep it to about 40 or 50 active clients per AP, before airtime starts becoming a significant factor.

In an environment like this, you want as many client devices in the room to associate to your APs, even if they’re not actively using them – when they’re not associated, they’re sitting out there, banging away with probe requests (especially if you have any hidden SSIDs), chewing up airtime (kind of like that scene from Family Guy where Stewie is hounding Lois just to say “Hi.”). Once they associate, they quiet down a whole bunch.

In addition to the main sanctuary, there are also a couple of other smaller but dense spaces: the chapel (seats 300) and the East Room (large classroom that can seat up to 250). In these areas, design focused on capacity, rather than coverage.

Structural Considerations

As is often the case with church facilities, College Park Church is an amalgamation of several different buildings built over a span of many years, accommodating church growth. What this ends up meaning is that the original building is then surrounded on multiple sides with an addition, and you end up with a lot of exterior walls in the middle of the building, as well as many different types of construction. Some parts of the building were wood-frame, others were steel frame, and others were cast concrete. The initial planning on this building was done without an onsite visit, but the drawings made it pretty obvious where those exterior (brick!) walls were. Naturally, this also makes ancillary tasks like cabling a little interesting.

Fortunately, the church had a display wall that showed the growth of the church which included several construction pictures of the building, which was almost as good as having x-ray vision.

Aesthetic Considerations

Because this is a public space, the visual appearance of the APs is also a key factor – Sometimes putting an AP out of sight takes precendence over placing for optimal Wi-Fi or BLE performance.

Placement Considerations

Coverage Area

Mist specifies that the BLE array can cover about 2500 square feet. The wifi can cover a little more, but it doesn’t hurt to keep your wifi cells that size as well, since you’ll get more capacity out of it. In most public areas of the building, we’re planning for capacity, not coverage. With Mist, if you need to fill some BLE coverage holes where your wifi is sufficient, you can use the BT11 as a Bluetooth-only AP.

AP Height

Mist recommends placing the APs at a height of 4-5m above the floor, in order to provide optimal BLE coverage. The cloud controller has a field in the AP record where you can specify the actual height above the floor.

AP Orientation

Because the BLE array is directional, you can’t just mount the APs facing any direction you please. These APs are really designed to be mounted horizontally, the “front” of the AP should be consistently towards plan north, but the controller does have the ability to specify rotation from plan north in case mounting it that way isn’t practical. The area, orientation and height are critical to accurate calculation of location information.

AP Location

Several of the existing APs in older sections of the building were mounted to hard ceiling areas, and we had to not only reuse the data cable that was there, but also the location. Fortunately, the previous system (Ubiquiti UniFi) was reasonably well-placed to begin with, and we were able to keep good coverage and reuse those locations without any trouble.

There were also some co-existence issues in the sanctuary where we had to make sure we stayed out of the way of theatrical lighting and fixtures that would pose a problem with physical or RF interference. In the sanctuary, we also have to consider the safety factor of the APs and keeping them from falling onto congregants like an Australian Drop-Bear.

Planning for BLE

Since starting this project, I’ve begun working with Ekahau on testing BLE coverage modeling as part of the overall wifi coverage, and it’s looking very promising. I was able to go back to the CPC design and replan it with BLE radios, and it’s awesome. Those guys in Helsinki keep coming up with great ideas. As far as Ekahau is concerned, multi-radio APs are nothing too difficult – They’ve been doing this for Xirrus arrays for some time now, as well as the newer dual-5GHz APs.

Stay tuned for a post about BLE in Ekahau when Jussi says I’m allowed to talk about it.

Up Next: The Installation

 

Cover Image: Explore Kansas: The Flint Hills National Scenic Byway (Kansas Highway 177)

Misty valley landscape with a tree on an island

Mist Deployment (Part The First)

First in a series about our first deployment of a Mist Systems wireless network. Mist Systems Logo

Over the course of the past few months, I’ve been working with the IT staff at College Park Church in Indianapolis to overhaul their aging Ubiquiti UniFi wireless system. They initially were looking at a Ruckus system, owing to its widespread use among other churches involved with the Church IT Network and its national conference (where I gave a presentation on Wi-Fi last fall). We had recently signed on as a partner with industry newcomer Mist Systems, and had prepared a few designs of similar size and scope for other churches in the Indianapolis area using the Mist system. We proposed a design with Ruckus, and another with Mist, with the church selecting Mist for its magic sauce, which is its Bluetooth Low Energy (BLE) capability for location engagement and analytics.

Fundamentally, the AP count, coverage, and capacity were not significantly different with Ruckus vs. Mist, and Mist offered a few advantages over the Ruckus in terms of the ability to add external antennas for creating smaller cells in the sanctuary from the APs mounted on the catwalks, as floor mounting was not an option.

About Mist

Mist is a young company that’s been around for about two or three years, and they have developed a couple of cool things in their platform – The first is what they call their AI cloud, the second is their BLE subsystem, and the last is their API.

Their AI component is a cloud management dashboard (similar to what you would see with Ruckus Cloud or Meraki — many of the engineers that started with Mist came over from Meraki), where the APs are constantly analyzing AP and client performance through frame capture and analysis, and reporting it back to the cloud controller. The philosophy here is that a large majority of the issues that users have with Wi-Fi performance is actually related to performance on the wired side of the network (“It’s always DNS.” Not always, but DNS — and DHCP — are major sources of Wi-Fi pain). The machine learning AI backend is looking at the stream of frames to detect problems, and then using that to generate Wi-Fi SLA metrics that can help determine where problems lie within the infrastructure, and doing some analysis of root causes. An example of this is monitoring the entire Station/AP conversation during and shortly following the association process. It looks at how long association took. How long DHCP took (and if it was successful), whether 4-way handshakes completed, and so on. It will also keep a frame capture of that conversation for further manual troubleshooting. It also keeps a log of AP-level events such as reboots and code changes so that client errors can be correlated on a timeline to those events. There’s a lot more it can do, and I’m just giving a brief summary here. Mist has lots of informational material on their website (and admittedly, there’s a goodly amount of marketing fluff in it, but that’s what you’d expect on the vendor website).

Graphs of connection metrics from the Mist system

 

 

 

 

 

 

 

 

 

 

Next, we have their BLE array. This is what really sets Mist apart from the others, and is one of the more interesting pieces of tech to show up in wifi hardware since Ruckus came on the scene with their adaptive antenna technology. Each AP has not one, but *eight* BLE radios in it, coupled with a 16-element antenna array (8 TX, 8RX). Each antenna provides an approximately 45° beam covering a full circle. Mist is able to use this in two key ways. One is the ability to get ridiculously precise BLE location information from their mobile SDK, (and by extension, locate a BLE transponder for asset visibility/tracking) and the other is the ability to use multiple APs to place a virtual BLE beacon anywhere you want without having to go physically install a battery-powered beacon. There are myriad uses for this in retail environments, and the possibilities for engagement and asset tracking are very interesting in the church world as well.

Lastly, we have their API. According to Mist, their cloud controller’s web UI only exposes about 40% of what their system can do. The remainder is available via a REST API that will allow you do do all kinds of neat tricks with it. I haven’t had a chance to dig into this much yet, but there’s a tremendous amount of potential there. Jake Snyder has taught a 3-day boot camp on using Python in network administration to leverage the power of APIs like the one from Mist (Ruckus also has an API on their Cloud and SmartZone controllers)

Mist is also updating their feature set on a weekly basis – rather than one big update every 6 months that may or may not break stuff, small weekly releases allow them to deploy features in a more controlled manner, making it easy to track down any potential show-stopper bugs, preferably before they get released into the wild. You can select whether your APs get the early-release updates, or use a more extensively tested stable channel.

Much like Meraki, having all your AP data in the cloud is tremendously useful when contacting support, as they have access to your controller data without you having to ship it to them. They can also take database snapshots and develop/test new features based on real data from the field rather than simulated data. No actual upper-layer traffic is captured.

The Hardware

note: all prices are US list – specific pricing will be up to your partner and geography.

There are four APs in the Mist line. The flagship 4×4 AP41 ($1385), the lower-end AP21 ($845), the outdoor AP61 ($?) , and the BLE-only BT11 ($?). The AP41 also comes in a connectorized version called the AP41E, at the same price as the AP41 with the internal antenna.

The AP41/41E is built on a cast aluminum heat sink, making the AP noticeably heavy. It offers an Ethernet output port, a USB port, a console port, and what they call an “IoT port” that provides for some analog sensor inputs, Arduino-style. It requires 802.3at (PoE+) power, or can use an external 12V supply with a standard 5.5×2.5mm coaxial connector. In addition to the 4-chain Wifi radio and the BLE array, the AP41 also has a scanning radio for reading the RF environment. On the AP41E, the antenna connectors are located on the downward face of the AP.

The AP21 is an all-plastic unit that uses the same mounting spacing as the AP41, and has an Ethernet pass-through port with PoE (presumably to power downstream BT11 units or cameras). Like the AP41, it also has the external 12V supply option.

This install didn’t make use of BT11 or AP61 units, so I don’t have much hands-on info about them.

It’s also important to note that none of these APs ship with a mounting bracket, nor does the AP have any kind of integrated mounting like you would find on a Ruckus AP. Mist currently offers 3 mounting brackets: a T-Rail bracket ($25), a drywall bracket ($25) and a threaded rod bracket ($40). The AP attaches to these brackets via four T10 metric shoulder screws (Drywall, Rod), or four metric Phillips screws (T-Rail). More on these later.

The Software

Each AP must be licensed, and there are three possibilities: Wifi-only, BLE Engagement, and BLE Asset tracking. Each subscription is nominally $150/year per AP, although there are bundles available with either two services or all three. Again, your pricing will depend on your location and your specific partner. Mist recently did away with multi-year pricing, so there’s no longer a cost advantage in pre-buying multiple years of subscriptions.

When the subscription expires, Mist won’t shut off the AP the way Meraki does, however, the APs will no longer have warranty coverage. After a subscription has been expired for two months, Mist will not reactivate an AP. The APs will continue to operate with their last configuration, however, but there will no longer be access to the cloud dashboard for that AP.

Links:

Mist Systems

Jake Snyder on Clear To Send podcast #114: Automate or Die

Mist Product Information

Up Next: The Design